Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
PLoS One ; 19(3): e0299571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466744

RESUMO

Phosphatases can dephosphorylate phosphorylated kinases, leading to their inactivation, and ferroptosis is a type of cell death. Therefore, our aim is to identify phosphatases associated with ferroptosis by analyzing the differentially expressed genes (DEGs) of the Luminal A Breast Cancer (LumABC) cohort from the Cancer Genome Atlas (TCGA). An analysis of 260 phosphatase genes from the GeneCard database revealed that out of the 28 DEGs with high expression, only the expression of pyruvate dehydrogenase phosphatase 2 (PDP2) had a significant correlation with patient survival. In addition, an analysis of DEGs using gene ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis revealed a significant variation in the expression of ferroptosis-related genes. To further investigate this, we analyzed 34 ferroptosis-related genes from the TCGA-LumABC cohort. The expression of long-chain acyl-CoA synthetase 4 (ACSL4) was found to have the highest correlation with the expression of PDP2, and its expression was also inversely proportional to the survival rate of patients. Western blot experiments using the MCF-7 cell line showed that the phosphorylation level of ACSL4 was significantly lower in cells transfected with the HA-PDP2 plasmid, and ferroptosis was correspondingly reduced (p < 0.001), as indicated by data from flow cytometry detection of membrane-permeability cell death stained with 7-aminoactinomycin, lipid peroxidation, and Fe2+. Immunoprecipitation experiments further revealed that the phosphorylation level of ACSL4 was only significantly reduced in cells where PDP2 and ACSL4 co-precipitated. These findings suggest that PDP2 may act as a phosphatase to dephosphorylate and inhibit the activity of ACSL4, which had been phosphorylated and activated in LumABC cells. Further experiments are needed to confirm the molecular mechanism of PDP2 inhibiting ferroptosis.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/genética , Coenzima A Ligases/genética , Ferroptose/genética , Peroxidação de Lipídeos , Monoéster Fosfórico Hidrolases , Fosforilação , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo
2.
J Biol Chem ; 300(3): 105697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301889

RESUMO

Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.


Assuntos
Aciltransferases , Cardiolipinas , Oxirredutases , Piruvato Desidrogenase (Lipoamida)-Fosfatase , Aciltransferases/genética , Aciltransferases/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cálcio/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Animais , Camundongos , Técnicas de Inativação de Genes , Ligação Proteica
3.
FEBS J ; 290(8): 2165-2179, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36453802

RESUMO

Cancer cells, when exposed to the hypoxic tumour microenvironment, respond by activating hypoxia-inducible factors (HIFs). HIF-1 mediates extensive metabolic re-programming, and expression of HIF-1α, its oxygen-regulated subunit, is associated with poor prognosis in cancer. Here we analyse the role of pyruvate dehydrogenase phosphatase 1 (PDP1) in the regulation of HIF-1 activity. PDP1 is a key hormone-regulated metabolic enzyme that dephosphorylates and activates pyruvate dehydrogenase (PDH), thereby stimulating the conversion of pyruvate into acetyl-CoA. Silencing of PDP1 down-regulated HIF transcriptional activity and the expression of HIF-dependent genes, including that of PDK1, the kinase that phosphorylates and inactivates PDH, opposing the effects of PDP1. Inversely, PDP1 stimulation enhanced HIF activity under hypoxia. Alteration of PDP1 levels or activity did not have an effect on HIF-1α protein levels, nuclear accumulation or interaction with its partners ARNT and NPM1. However, depletion of PDP-1 decreased histone H3 acetylation of HIF-1 target gene promoters and inhibited binding of HIF-1 to the respective hypoxia-response elements (HREs) under hypoxia. Furthermore, the decrease of HIF transcriptional activity upon PDP1 depletion could be reversed by treating the cells with acetate, as an exogenous source of acetyl-CoA, or the histone deacetylase (HDAC) inhibitor trichostatin A. These data suggest that the PDP1/PDH/HIF-1/PDK1 axis is part of a homeostatic loop which, under hypoxia, preserves cellular acetyl-CoA production to a level sufficient to sustain chromatin acetylation and transcription of hypoxia-inducible genes.


Assuntos
Histonas , Piruvato Desidrogenase (Lipoamida)-Fosfatase , Humanos , Acetilcoenzima A/metabolismo , Acetilação , Hipóxia Celular/genética , Histonas/genética , Histonas/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Fator 1 Induzível por Hipóxia
4.
Biophys J ; 120(5): 936-949, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33515599

RESUMO

The mammalian pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex that connects glycolysis to the tricarboxylic acid cycle by catalyzing pyruvate oxidation to produce acetyl-CoA, NADH, and CO2. This reaction is required to aerobically utilize glucose, a preferred metabolic fuel, and is composed of three core enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The pyruvate-dehydrogenase-specific kinase (PDK) and pyruvate-dehydrogenase-specific phosphatase (PDP) are considered the main control mechanism of mammalian PDC activity. However, PDK and PDP activity are allosterically regulated by several effectors fully overlapping PDC substrates and products. This collection of positive and negative feedback mechanisms confounds simple predictions of relative PDC flux, especially when all effectors are dynamically modulated during metabolic states that exist in physiologically realistic conditions, such as exercise. Here, we provide, to our knowledge, the first globally fitted, pH-dependent kinetic model of the PDC accounting for the PDC core reaction because it is regulated by PDK, PDP, metal binding equilibria, and numerous allosteric effectors. The model was used to compute PDH regulatory complex flux as a function of previously determined metabolic conditions used to simulate exercise and demonstrates increased flux with exercise. Our model reveals that PDC flux in physiological conditions is primarily inhibited by product inhibition (∼60%), mostly NADH inhibition (∼30-50%), rather than phosphorylation cycle inhibition (∼40%), but the degree to which depends on the metabolic state and PDC tissue source.


Assuntos
Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases , Complexo Piruvato Desidrogenase , Animais , Fosforilação , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/metabolismo
5.
Sci Rep ; 10(1): 3930, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127618

RESUMO

A splice site mutation in the canine pyruvate dehydrogenase kinase 4 (PDK4) gene has been shown to be associated with the development of dilated cardiomyopathy (DCM) in Doberman Pinchers (DPs). Subsequent studies have successfully demonstrated the use of dermal fibroblasts isolated from DPs as models for PDK4 deficiency and have shown activation of the intrinsic (mitochondrial mediated) apoptosis pathway in these cells under starvation conditions. For this study, we sought to further explore the functional consequences of PDK4 deficiency in DP fibroblasts representing PDK4wt/wt, PDK4wt/del, and PDK4del/del genotypes. Our results show that starvation conditions cause increased perinuclear localization of mitochondria and decreased cell proliferation, altered expression levels of pyruvate dehydrogenase phosphatase (PDP) and pyruvate dehydrogenase (PDH), dramatically increased PDH activity, and an impaired response to mitochondrial stress in affected cells. In sum, these results show the broad impact of PDK4 deficiency and reveal mechanistic pathways used by these cells in an attempt to compensate for the condition. Our data help to elucidate the mechanisms at play in this extremely prevalent DP disorder and provide further support demonstrating the general importance of metabolic flexibility in cell health.


Assuntos
Fibroblastos/enzimologia , Proteínas Quinases/deficiência , Western Blotting , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Microscopia de Fluorescência , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Quinases/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
6.
Nature ; 566(7743): 279-283, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700909

RESUMO

Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.


Assuntos
Aerobiose , Fatores de Transcrição Forkhead/metabolismo , Glicólise , Células 3T3 , Animais , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo
7.
Toxicol Lett ; 286: 48-53, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29357290

RESUMO

There have been many concerns about the possible adverse effects of thyroid hormone-disrupting chemicals in the environment. Because thyroid hormones are essential for regulating the growth and differentiation of many tissues, disruption of thyroid hormones during the neonatal period of an organism might lead to permanent effects on that organism. We postulated that there are target genes that are sensitive to thyroid hormones particularly during the neonatal period and that would thus be susceptible to thyroid hormone-disrupting chemicals. Global gene expression analysis was used to identify these genes in the liver of rat neonates. The changes in hepatic gene expression were examined 24 h after administering 1.0, 10, and 100 ng/g body weight (bw) triiodothyronine (T3) to male rats on postnatal day 3. Thirteen upregulated and four downregulated genes were identified in the neonatal liver. Among these, Pdp2 and Slc25a25 were found to be upregulated and more sensitive to T3 than the others, whereas Cyp7b1 and Hdc were found to be downregulated even at the lowest dose of 1.0 ng/g bw T3. Interestingly, when the responses of gene expression to T3 were examined in adult rats (8-week old), one-third of them did not respond to T3. The environmental chemicals with thyroid hormone-like activity, hydroxylated polybrominated diphenyl ethers, were then administered to neonatal rats to examine the effects on expression of the identified genes. The results showed that these chemicals were indeed capable of changing the expression of Slc25a25 and Hdc. Our results demonstrated a series of hepatic T3-responsive genes that are more sensitive to hormones during the neonatal period than during adulthood. These genes might be the potential targets of thyroid hormone-disrupting chemicals in newborns.


Assuntos
Disruptores Endócrinos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Animais Recém-Nascidos , Família 7 do Citocromo P450/genética , Família 7 do Citocromo P450/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Ratos Endogâmicos F344 , Medição de Risco , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
8.
J Hypertens ; 36(2): 306-318, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28858979

RESUMO

OBJECTIVE: Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS: The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS: Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION: MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.


Assuntos
Metabolismo Energético , MicroRNAs/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Pré-Eclâmpsia/sangue , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Trofoblastos/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Apoptose , Linhagem Celular , Feminino , Idade Gestacional , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial , MicroRNAs/sangue , MicroRNAs/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Oxidantes/farmacologia , Estresse Oxidativo , Placenta/metabolismo , Pré-Eclâmpsia/genética , Gravidez , Terceiro Trimestre da Gravidez , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Adulto Jovem
9.
Cancer Lett ; 394: 13-21, 2017 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28235541

RESUMO

A limited number of studies have indicated an association of the mitotic kinase polo-like kinase 1 (PLK1) and cellular metabolism. Here, employing an inducible RNA interference approach in A375 melanoma cells coupled with a PCR array and multiple validation approaches, we demonstrated that PLK1 alters a number of genes associated with cellular metabolism. PLK1 knockdown resulted in a significant downregulation of IDH1, PDP2 and PCK1 and upregulation of FBP1. Ingenuity Pathway Analysis (IPA) identified that 1) glycolysis and the pentose phosphate pathway are major canonical pathways associated with PLK1, and 2) PLK1 inhibition-modulated genes were largely associated with cellular proliferation, with FBP1 being the key modulator. Further, BI 6727-mediated inhibition of PLK1 caused a decrease in PCK1 and increase in FBP1 in A375 melanoma cell implanted xenografts in vivo. Furthermore, an inverse correlation between PLK1 and FBP1 was found in melanoma cells, with FBP1 expression significantly downregulated in a panel of melanoma cells. In addition, BI 6727 treatment resulted in an upregulation in FBP1 in A375, Hs294T and G361 melanoma cells. Overall, our study suggests that PLK1 may be an important regulator of metabolism maintenance in melanoma cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético , Técnicas de Silenciamento de Genes , Melanoma/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Neoplasias Cutâneas/enzimologia , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Melanoma/genética , Melanoma/patologia , Camundongos , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transfecção , Carga Tumoral
10.
J Biol Chem ; 291(3): 1514-28, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26601949

RESUMO

Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.


Assuntos
Calcitriol/metabolismo , Regulação da Expressão Gênica , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Receptores de Calcitriol/agonistas , Calcitriol/análogos & derivados , Células Cultivadas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
11.
J Clin Invest ; 125(4): 1579-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25798621

RESUMO

Metabolic reprogramming is implicated in macrophage activation, but the underlying mechanisms are poorly understood. Here, we demonstrate that the NOTCH1 pathway dictates activation of M1 phenotypes in isolated mouse hepatic macrophages (HMacs) and in a murine macrophage cell line by coupling transcriptional upregulation of M1 genes with metabolic upregulation of mitochondrial oxidative phosphorylation and ROS (mtROS) to augment induction of M1 genes. Enhanced mitochondrial glucose oxidation was achieved by increased recruitment of the NOTCH1 intracellular domain (NICD1) to nuclear and mitochondrial genes that encode respiratory chain components and by NOTCH-dependent induction of pyruvate dehydrogenase phosphatase 1 (Pdp1) expression, pyruvate dehydrogenase activity, and glucose flux to the TCA cycle. As such, inhibition of the NOTCH pathway or Pdp1 knockdown abrogated glucose oxidation, mtROS, and M1 gene expression. Conditional NOTCH1 deficiency in the myeloid lineage attenuated HMac M1 activation and inflammation in a murine model of alcoholic steatohepatitis and markedly reduced lethality following endotoxin-mediated fulminant hepatitis in mice. In vivo monocyte tracking further demonstrated the requirement of NOTCH1 for the migration of blood monocytes into the liver and subsequent M1 differentiation. Together, these results reveal that NOTCH1 promotes reprogramming of mitochondrial metabolism for M1 macrophage activation.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos/fisiologia , Mitocôndrias/metabolismo , Receptor Notch1/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Transporte de Elétrons/genética , Endotoxemia/complicações , Fígado Gorduroso Alcoólico/imunologia , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Glucose/metabolismo , Inflamação/metabolismo , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/patologia , Óxido Nítrico/metabolismo , Fosforilação Oxidativa , Estrutura Terciária de Proteína , Piruvato Desidrogenase (Lipoamida)-Fosfatase/antagonistas & inibidores , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Notch1/deficiência , Transcrição Gênica , Regulação para Cima
12.
Neuro Oncol ; 17(9): 1220-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25712957

RESUMO

BACKGROUND: Even though altered metabolism representing a hallmark of cancer was proposed nearly a century ago, recent technological advances have allowed investigators to continue uncovering a previously unrecognized complexity of metabolic programs that drive tumorigenesis beyond that of aerobic glycolysis. METHODS: The bioenergetic state of a diverse panel of glioblastoma models, including isogenic lines derived from a genetically engineered adult astrocytic mouse model and patient-derived glioblastoma stem cells, was determined at baseline and in stressed conditions. Mechanisms contributing to the discovered metabolic phenotypes were determined through molecular and chemical perturbation, and their biological consequences were evaluated in vivo and in patient samples. RESULTS: Attenuated mitochondrial reserve capacity was identified as a common metabolic phenotype in glioblastoma lines. This phenotype was linked mechanistically with the capacity of Ras-mediated signaling to inhibit pyruvate dehydrogenase (PDH) activity through downregulation of PDH phosphatase (PDP) expression. PDP1 repression was validated clinically in patient-derived samples, suggesting that aberrant cellular signaling typical of glioblastoma actively modulates PDH activity. This phenotype was reversed through both chemical and molecular perturbation. Restoration of PDH activity through stable expression of PDP1-impaired tumorigenic potential. CONCLUSIONS: These findings support the central role that PDH regulation plays as a downstream consequence of aberrant signaling associated with gliomagenesis and the scientific rationale to continue to develop and test clinical strategies designed to activate PDH as a form of anticancer therapy in glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Mitocôndrias/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Proteínas ras/metabolismo , Animais , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Metabolismo Energético , Glioblastoma/enzimologia , Humanos , Camundongos , Mitocôndrias/enzimologia , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Transdução de Sinais
13.
Mol Cell ; 53(4): 534-48, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24486017

RESUMO

Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation of PDHA1 and PDP1 is common in epidermal growth factor (EGF)-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1, and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important in promoting glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct posttranslational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Sirtuína 3/metabolismo , Tirosina/química , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Lisina/química , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Transplante de Neoplasias , Neoplasias/metabolismo , Fosforilação
14.
Nature ; 498(7452): 109-12, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23685455

RESUMO

In response to tenacious stress signals, such as the unscheduled activation of oncogenes, cells can mobilize tumour suppressor networks to avert the hazard of malignant transformation. A large body of evidence indicates that oncogene-induced senescence (OIS) acts as such a break, withdrawing cells from the proliferative pool almost irreversibly, thus crafting a vital pathophysiological mechanism that protects against cancer. Despite the widespread contribution of OIS to the cessation of tumorigenic expansion in animal models and humans, we have only just begun to define the underlying mechanism and identify key players. Although deregulation of metabolism is intimately linked to the proliferative capacity of cells, and senescent cells are thought to remain metabolically active, little has been investigated in detail about the role of cellular metabolism in OIS. Here we show, by metabolic profiling and functional perturbations, that the mitochondrial gatekeeper pyruvate dehydrogenase (PDH) is a crucial mediator of senescence induced by BRAF(V600E), an oncogene commonly mutated in melanoma and other cancers. BRAF(V600E)-induced senescence was accompanied by simultaneous suppression of the PDH-inhibitory enzyme pyruvate dehydrogenase kinase 1 (PDK1) and induction of the PDH-activating enzyme pyruvate dehydrogenase phosphatase 2 (PDP2). The resulting combined activation of PDH enhanced the use of pyruvate in the tricarboxylic acid cycle, causing increased respiration and redox stress. Abrogation of OIS, a rate-limiting step towards oncogenic transformation, coincided with reversion of these processes. Further supporting a crucial role of PDH in OIS, enforced normalization of either PDK1 or PDP2 expression levels inhibited PDH and abrogated OIS, thereby licensing BRAF(V600E)-driven melanoma development. Finally, depletion of PDK1 eradicated melanoma subpopulations resistant to targeted BRAF inhibition, and caused regression of established melanomas. These results reveal a mechanistic relationship between OIS and a key metabolic signalling axis, which may be exploited therapeutically.


Assuntos
Senescência Celular/genética , Mitocôndrias/enzimologia , Oncogenes/genética , Complexo Piruvato Desidrogenase/metabolismo , Animais , Linhagem Celular , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Ativação Enzimática , Glicólise , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais
16.
Neurosci Lett ; 525(2): 140-5, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22884618

RESUMO

Cerebral pyruvate depletion and lactate acidosis are common metabolic characteristics of patients with traumatic brain injury (TBI) and are associated with poor prognosis. Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme coupling glycolysis to mitochondrial tricarboxylic acid (TCA) cycle. Brain PDH activity is regulated by its phosphorylation status and other effectors. Phosphorylation of PDH E1α1 subunit by PDH kinase inhibits PDH activity while dephosphorylation of phosphorylated PDHE1α1 by PDH phosphatase (PDP1) restores PDH activity. In situ hybridization showed that PDP1 mRNA is highly expressed in the cerebral cortex, hippocampus and thalamus of rat. Controlled cortical impact (CCI) induced a significant increase in PDP1 mRNA expression in ipsilateral cerebral cortex at 4 h (P<0.05) and 24 h post CCI (P<0.01) that returned to basal level 72 h post CCI. PDP1 mRNA level increased transiently in ipsilateral hippocampal dentate gyrus and CA1-3 subfields 4 h post CCI (P<0.01) but decreased significantly 24 h and 72 h (P<0.01) post CCI, coinciding with a marked increase in neuronal apoptosis in ipsilateral hippocampus 24 h post CCI. PDP1 mRNA expression in thalamus and other subcortical regions decreased persistently post CCI. Contralateral CCI and craniotomy showed similar effects on PDP1 mRNA expression as ipsilateral CCI. Because GFAP mRNA expression was induced in brain regions where PDP1 expression was altered, further study should determine the potential relationship between astrocyte activation, PDP1 alteration, and pyruvate metabolism following TBI.


Assuntos
Lesões Encefálicas/enzimologia , Córtex Cerebral/enzimologia , Hipocampo/enzimologia , Hiperglicemia/enzimologia , Hipoglicemia/enzimologia , Neurônios/enzimologia , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , RNA Mensageiro/metabolismo , Tálamo/enzimologia , Animais , Apoptose , Biomarcadores/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Hipocampo/patologia , Hiperglicemia/etiologia , Hipoglicemia/etiologia , Hibridização In Situ , Masculino , Neurônios/patologia , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Ratos , Ratos Sprague-Dawley
17.
Cell Calcium ; 52(1): 1-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22591641

RESUMO

Indirect findings in the 1950s had indicated that mitochondria could accumulate Ca(2+), but only in 1961 isolated mitochondria were directly shown to take it up in a process driven by the activity of the respiratory chain or by the hydrolysis of added ATP. The uptake of Ca(2+) could be accompanied by the simultaneous uptake of inorganic phosphate, leading to the precipitation of hydroxyapatite in the matrix and to the effective buffering of the free Ca(2+) concentration in it. The uptake of Ca(2+) occurred via an electrophoretic uniporter that has been molecularly identified only recently. Ca(2+) was then released through a Na(+)/Ca(2+) exchanger that has also been identified very recently (a H(+)/Ca(2+) antiporter has also been described in some mitochondrial types). In the matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated by Ca(2+), providing a rationale for the Ca(2+) cycling process. The affinity of the uptake uniporter was found to be too low to efficiently regulate Ca(2+) in the low to mid nM concentration in the cytosol. However, a number of findings showed that energy linked transport of Ca(2+) did nevertheless occur in mitochondria in situ. The enigma was solved in the 1990s, when it was found that perimitochondrial Ca(2+) pools are created by the discharge of Ca(2+) from vicinal endoplasmic reticulum stores in which the concentration of Ca(2+) is high enough to satisfy the poor affinity of the uniporter. Thus, mitochondria have now regained a key role in the regulation of cytosolic Ca(2+) (not only of their own internal Ca(2+)).


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Cálcio/história , Canais de Cálcio/história , Canais de Cálcio/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , História do Século XX , Íons/química , Oxirredutases/metabolismo , Fosfatos/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Ratos , Trocador de Sódio e Cálcio/história , Trocador de Sódio e Cálcio/metabolismo
18.
Exp Neurol ; 234(1): 31-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22193111

RESUMO

Dysregulated glucose metabolism and energy deficit is a characteristic of severe traumatic brain injury (TBI) but its mechanism remains to be fully elucidated. Phosphorylation of pyruvate dehydrogenase (PDH) is the rate-limiting mitochondria enzyme reaction coupling glycolysis to the tricarboxylic acid cycle. Phosphorylation of PDH E1α1 subunit catalyzed by PDH kinase (PDK) inhibits PDH activity, effectively decoupling aerobic glycolysis whereas dephosphorylation of phosphorylated PDHE1α1 by PDH phosphatase (PDP) restores PDH activity. We recently reported altered expression and phosphorylation of pyruvate dehydrogenase (PDH) following TBI. However, little is known about PDK and PDP involvement. We determined PDK (PDK1-4) and PDP isoenzyme (PDP1-2) mRNA and protein expression in rat brain using immunohistochemistry and in situ hybridization techniques. We also quantified PDK and PDP mRNA and protein levels in rat brain following TBI using quantitative real-time PCR and Western blot, respectively. Controlled cortical impact-induced TBI (CCI-TBI) and craniotomy significantly enhanced PDK1-2 isoenzyme mRNA expression level but significantly suppressed PDP1 and PDK4 mRNA expression after the injury (4h to 7days). CCI-TBI and craniotomy also significantly increased PDK1-4 isoenzyme protein expression but suppressed PDP1-2 protein expression in rat brain. In summary, the divergent changes between PDK and PDP expression indicate imbalance between PDK and PDP activities that would favor increased PDHE1α1 phosphorylation and enzyme inhibition contributing to impaired oxidative glucose metabolism in TBI as well as craniotomy.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/enzimologia , Córtex Cerebral/patologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Análise de Variância , Animais , Lesões Encefálicas/etiologia , Craniotomia/efeitos adversos , Lateralidade Funcional , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Piruvatos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
19.
J Appl Physiol (1985) ; 111(3): 751-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680880

RESUMO

To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), six healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an oral glucose tolerance test (OGTT) and a one-legged knee extensor exercise bout [45 min at 60% maximal load (W(max))] with muscle biopsies obtained from vastus lateralis before, immediately after exercise, and at 3 h of recovery. Blood samples were taken from the femoral vein and artery before and after 40 min of exercise. Glucose intake elicited a larger (P ≤ 0.05) insulin response after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40 min of exercise was larger (P ≤ 0.05) before bed rest than after. Muscle glycogen content tended to be higher (0.05< P ≤ 0.10) after bed rest than before, but muscle glycogen breakdown in response to exercise was similar before and after bed rest. PDH-E1α protein content did not change in response to bed rest or in response to the exercise intervention. Exercise increased (P ≤ 0.05) the activity of PDH in the active form (PDHa) and induced (P ≤ 0.05) dephosphorylation of PDH-E1α on Ser²9³, Ser²95 and Ser³°°, with no difference before and after bed rest. In conclusion, although 7 days of bed rest induced whole body glucose intolerance, exercise-induced PDH regulation in skeletal muscle was not changed. This suggests that exercise-induced PDH regulation in skeletal muscle is maintained in glucose-intolerant (e.g., insulin resistant) individuals.


Assuntos
Repouso em Cama , Exercício Físico , Contração Muscular , Piruvato Desidrogenase (Lipoamida)/metabolismo , Músculo Quadríceps/enzimologia , Adulto , Biópsia , Glicemia/metabolismo , Ativação Enzimática , Teste de Esforço , Regulação Enzimológica da Expressão Gênica , Intolerância à Glucose/sangue , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/metabolismo , Serina , Fatores de Tempo , Adulto Jovem
20.
PLoS Genet ; 7(4): e1001377, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533078

RESUMO

The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-ß signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-ß signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-ß signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Longevidade/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Insulina/metabolismo , Mutação , Fenótipo , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Interferência de RNA , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...